Signal-Energy based Fault Classification of Single- Circuit Transmission Line using S-Transform and Neural Network
نویسندگان
چکیده
This paper presents a technique for diagnosis of the type of fault and the faulty phase on overhead transmission line. The proposed method is based on the multiresolution S-transform and Parseval’s theorem. S-transform is used to produce instantaneous frequency vectors of the voltage signals of the three phases, and then the energies of these vectors, based on the Parseval’s theorem, are utilized as inputs to a Probabilistic Neural Network (PNN). The power system network considered in this study is three phase Transmission line with balanced loading simulated in the PowerSim Toolbox of MATLAB. The fault conditions are simulated by the variation of fault location, fault resistance, fault inception angle. The training is conducted by programming in MATLAB. The robustness of the proposed scheme is investigated by synthetically polluting the simulated voltage signals with White Gaussian Noise. The suggested method has produced fast and accurate results. Estimation of fault location is intended to be conducted in future.
منابع مشابه
Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملFault location and classification in non-homogeneous transmission line utilizing breaker transients
In this paper, a single-ended fault location method is presented based on a circuit breaker operation using the frequencies of traveling waves. The proposed method receives the required data from voltage traveling waves with the aid of Fast Fourier Transform (FFT) and Wavelet Transform. Then, the Artificial Neural Network (ANN) identifies fault type and determines its location. In order to eval...
متن کاملFault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملComparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN
An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کامل